
Allocator Implementations for Network-on-Chip Routers

Daniel U. Becker
Computer Systems Laboratory

Stanford University
dub@cva.stanford.edu

William J. Dally
Computer Systems Laboratory

Stanford University
dally@cva.stanford.edu

ABSTRACT
The present contribution explores the design space for vir-
tual channel (VC) and switch allocators in network-on-chip
(NoC) routers. Based on detailed RTL-level implementa-
tions, we evaluate representative allocator architectures in
terms of matching quality, delay, area and power and in-
vestigate the sensitivity of these properties to key network
parameters. We introduce a scheme for sparse VC allocation
that limits transitions between groups of VCs based on the
function they perform, and reduces the VC allocator’s delay,
area and power by up to 41%, 90% and 83%, respectively.
Furthermore, we propose a pessimistic mechanism for spec-
ulative switch allocation that reduces switch allocator delay
by up to 23% compared to a conventional implementation
without increasing the router’s zero-load latency. Finally, we
quantify the effects of the various design choices discussed
in the paper on overall network performance by presenting
simulation results for two exemplary 64-node NoC topolo-
gies.

1. INTRODUCTION
Modular, communication-centric design methodologies em-

ploying networks-on-chip (NoCs) will become crucial to keep-
ing design complexity for future chip multiprocessors (CMPs)
and systems-on-chip (SoCs) manageable in the face of con-
tinuously increasing transistor budgets [1, 3]. As the number
of architectural blocks that are integrated on a single chip
continues to rise, overall system performance and cost be-
come increasingly dependent on the efficiency of the NoC
implementation.

In addition to network-level design choices like topology,
routing function and flow control, router microarchitecture
represents a major factor in determining network perfor-
mance. One important design parameter for NoC routers
is the choice of switch allocator and—in networks employ-
ing virtual channels (VCs) [2]—VC allocator. The quality
of matchings generated by the latter can affect the aver-
age time head flits have to wait before being assigned an

c©ACM, 2009. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in SC ’09: Proceedings of the
2009 ACM/IEEE Conference on High Performance Computing, Network-
ing, Storage and Analysis. http://doi.acm.org/10.1145/1654059.1654112

output VC, preventing forward progress for subsequent flits
of the same packet and thereby increasing average buffer
utilization. Furthermore, when speculative switch alloca-
tion [17] is employed, the quality of VC allocation affects the
number of misspeculations that are caused by flits specula-
tively gaining access to the crossbar but failing to acquire a
VC. The switch allocator, on the other hand, schedules flits
that are buffered at the router’s inputs for traversal through
the crossbar; consequently, router performance under load is
strongly dependent on the quality of the matchings it gen-
erates between requests and available crossbar time slots.

Individual allocator implementations represent different
tradeoffs between matching quality and delay. Compared
to traditional long-haul and system-level networks, perfor-
mance in NoCs is typically much more sensitive to packet
latency; this mandates the use of relatively shallow router
pipelines and single-cycle allocation schemes. At the same
time, NoCs are usually subject to tight cycle time, area and
power constraints. Consequently, designers must select allo-
cator implementations that maximize matching quality sub-
ject to these constraints.

Allocation in VC-based NoCs has been addressed in a
number of prior research contributions:

Peh and Dally [17] present analytical delay models for
VC and switch allocators and propose a speculative switch
allocation mechanism. The delay models are derived based
on gate-level schematics; however, the authors only consider
separable input-first allocators in their analysis.

Mullins et al. [15] propose a technique for reducing the
delay of separable allocators by pre-computing arbitration
decisions one cycle in advance, and suggest a scheme for re-
ducing VC allocation delay based on a free VC queue. Park
et al. [16] introduce a mechanism that prioritizes flits trav-
eling along frequently used paths; furthermore, they suggest
a method to allow such flits to bypass the switch alloca-
tion pipeline stage entirely by propagating arbitration re-
quests ahead of the actual flit. Kumar et al. [12] describe
a switch allocation scheme that dynamically transitions be-
tween input- and output-first operation based on network
load, and prioritizes subsequent flits from the same packet
in an effort to minimize the number of routers at which
a given packet occupies resources. Kim et al. [11] intro-
duce an efficient switch allocation scheme for their proposed
row/column decoupled router architecture; however, it is not
directly applicable to different router designs. In all four pa-
pers, the authors focus their analysis on a specific network
configuration, and do not evaluate how performance and cost
of the proposed mechanisms scale with the network radix



and the number of VCs.
Mukherjee et al [14] compare the performance of three

different switch allocator implementations in the context of
a chip-to-chip processor interconnection network. The study
assumes a deeply pipelined router, and two of the allocators
considered require multiple cycles to generate a schedule;
both factors would be undesirable in a latency-critical NoC
scenario.

In the present work, we evaluate and compare RTL-level
implementations of three representative switch and VC al-
locator architectures in terms of matching quality, critical
path delay, area and power. We investigate the sensitivity
of these properties to key network parameters, and suggest
two microarchitectural improvements: Sparse VC allocation
significantly reduces the VC allocator’s logic complexity by
limiting transitions between groups of VCs; furthermore,
the critical path delay of a speculative switch allocator can
be improved by choosing a pessimistic implementation that
sacrifices speculation efficiency under load, but does not in-
crease the router’s zero-load latency. In order to quantify
how allocator design choices affect overall network-level per-
formance, we present simulation results for two exemplary
64-node NoC topologies across a set of different network pa-
rameters and load conditions. We find that the sensitivity
of network performance to the quality of switch allocation
grows with the router radix and the number of VCs, and
that overall performance is largely insensitive to the choice
of VC allocator.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief summary of basic allocation concepts.
Section 3 outlines our evaluation methodology. Section 4
describes VC allocator implementations and introduces a
scheme for sparse VC allocation. Section 5 discusses switch
allocator implementations and improvements to the specu-
lation mechanism. Finally, Section 6 concludes the paper.

2. BACKGROUND
This section gives a brief summary of the basic princi-

ples of allocation; a more thorough introduction is available
in [4].

An allocator performs a matching between resources and
requesters; i.e., an allocator assigns the former to the lat-
ter subject to three basic constraints: Resources are only
granted to requesters if a corresponding request exists, at
most one resource is assigned to each requester, and each re-
source is assigned to at most one requester. Any assignment
that satisfies these constraints is called a matching. Match-
ings in which no further resource assignment can be made
without first undoing an existing one are called maximal,
and those with the highest number of assignments possible
are called maximum matchings.

Clearly, in order to maximize resource utilization, it is de-
sirable for an allocator to produce matchings that are close
to maximum. In practice, however, there is a tradeoff be-
tween matching quality on the one hand, and delay, area and
power constraints that limit the allocator’s logic complexity
on the other hand.

2.1 Separable Allocation
A separable allocator generates a valid matching by de-

composing allocation into arbitration across requesters and
arbitration across resources. For separable input-first alloca-
tion (sep if), as shown in Figure 1(a), arbitration is first

output
arbiter
(1)

output
arbiter
(n)

…

…
…

input
arbiter
(1)

input
arbiter
(n)

…

req11

req1n

reqn1

reqnn

…
…

…
…

gnt11

gntn1

gnt1n

gntnn

x11

x1n

xn1

xnn

(a) Input-first (sep if).

input
arbiter
(1)

input
arbiter
(n)

…

…
…

output
arbiter
(1)

output
arbiter
(n)

…

req11

reqn1

req1n

reqnn

…
…

…
…

gnt11

gnt1n

gntn1

gntnn

x11

xn1

x1n

xnn

(b) Output-first (sep of).

Figure 1: Separable allocators.

performed independently at each requester, and a single
resource is selected for which to issue a request. A sec-
ond round of arbitration is then performed at each resource
to select a winning requester among all incoming requests.
For separable output-first allocation (sep of), shown in Fig-
ure 1(b), requesters eagerly forward all of their requests to
the associated resources, which again perform arbitration
between all incoming requests. However, as multiple re-
sources may select the same requester in the first stage, a
second arbitration step is required, in which each requester
chooses a winner among all resources that were assigned to
it in the first stage.

In order to ensure fairness and to avoid traffic pattern de-
pendent starvation, the input priorities for any given arbiter
in either scheme’s first arbitration stage are only updated if
the grant it produces is also successful in the second arbi-
tration stage and vice versa [13].

Arbiters—and thus separable allocators—can be designed
such that their delay scales approximately logarithmically
with the number of inputs, enabling relatively fast allocation
even for high-radix routers. However, because arbitration
across requesters and resources is performed independently,
separable allocators are not guaranteed to produce maximal
matchings. While multiple iterations can be performed to
improve matching quality, tight delay constraints typically
render this undesirable in the context of NoCs.

2.2 Wavefront Allocation
A wavefront allocator (wf) [19] works based on the prin-

ciple that a conflict between two requests can only occur
if the requester or the resource are identical for both, and
that they can otherwise be granted independently. Con-
sequently, if we represent the set of requests as a matrix,
with rows corresponding to requesters, columns correspond-
ing to resources, and non-zero matrix entries corresponding
to requests, the wavefront allocator generates a matching
by starting at an initial diagonal and granting all requests
that fall under it. For each request that is granted, further
requests in the same row or column are discarded, and allo-
cation proceeds in the same fashion with the next diagonal,
wrapping around at the end of each row and column as ap-
propriate. This process is repeated until all diagonals have
been serviced.

Weak fairness can be guaranteed by starting at a different
initial diagonal every time allocation is performed; however,
no fairness guarantees are provided beyond ensuring that all
requests are eventually served.

Unlike separable allocators, wavefront allocators effectively
consider requesters and resources simultaneously, and as a
result are guaranteed to find maximal—although not neces-
sarily maximum—matchings.



00

10

20

01

11

21

02

12

22

p0

p1

p2
r

r

r

g

g

g

g

g

g

r

r

r

r

r

r

g

g

g

OR

O
R

AND

AND

AND

pri yin

x o
ut

gn
t

yout

re
q

x in
Figure 2: Wavefront allocator (wf).

Figure 2 shows how a wavefront allocator can be imple-
mented as a regular array of simple base tiles, facilitating ef-
ficient full-custom implementations [5] with area that scales
quadratically with the number of inputs and approximately
linear delay. For synthesis-based implementations, however,
the combinational loops formed by the x and y paths have
to be broken in order to facilitate automated timing analy-
sis and gate sizing. Noting that these paths are effectively
disconnected at the currently active priority diagonal by the
two OR gates, we build a loop-free implementation by repli-
cating the array for each possible priority diagonal and se-
lecting the grant matrix generated by the currently active
one. Compared to a full-custom layout, this introduces a sig-
nificant area overhead, and the required fanout and output
multiplexers introduce additional logarithmic delay terms.
A more area-efficient implementation that avoids combina-
tional loops is presented in [9]; however, based on our exper-
iments, the implementation described earlier tends to yield
lower delay for the allocator sizes considered in this paper.

2.3 Maximum-Size Allocation
Conceptually, a maximum matching for a given set of re-

quests and resources is readily found by performing succes-
sive iterations of an augmenting path algorithm [6]. How-
ever, while hardware implementations have been proposed
that can perform one augmentation step per cycle [8], the
associated complexity as well as the inherently iterative na-
ture of generating a complete matching this way limit their
applicability to NoC routers. Furthermore, maximum-size
allocation inherently does not provide any fairness guaran-
tees, and can cause starvation for individual requesters in
the interest of maximizing overall throughput. Neverthe-
less, it provides a useful upper bound on matching quality
that other allocators can be benchmarked against.

3. METHODOLOGY
Our evaluation of allocator architectures is based both on

detailed RTL-level comparisons of individual allocators and
on network-level simulation results.

We consider two exemplary 64-node network topologies
and their corresponding allocator design points, identified
by the number of ports (P) and the number of VCs (V): An
8×8 mesh network (mesh) with a single network terminal
per router represents a commonly-used low-radix (P = 5)
NoC topology. As an example of a higher-radix topology,
we furthermore consider a two-dimensional 4×4 flattened
butterfly [10] network (fbfly) with a concentration factor of
four (P = 10).

3.1 RTL-Based Evaluation
In order to be able to perform detailed cost evaluations

and to gain insights about basic trends and tradeoffs that
are independent of higher-level implementation details, we
perform low-level comparisons of different allocator imple-
mentations based on isolated RTL models.

To this end, we have developed parameterized RTL imple-
mentations for the three allocator architectures considered.
For each design point, we use Synopsys Design Compiler
to find the minimum cycle time, the required cell area and
the average power consumption when applying a default ac-
tivity factor of 0.5 to all inputs; synthesis is performed us-
ing a commercial 45nm low-power standard cell library un-
der worst-case process, voltage and temperature conditions
(0.9V, 125◦C).

Furthermore, we assess the quality of allocation provided
by each allocator by performing open-loop simulations of
the individual RTL implementations. We apply input sets
of 10000 pseudo-random request matrices and count the re-
sulting grants. A normalized metric—henceforth referred to
as matching quality—is then obtained by dividing the to-
tal number of grants generated by each allocator implemen-
tation by the number of grants a maximum-size allocator
would generate for the same sequence of requests.

3.2 Network-Level Performance
We evaluate the impact of allocation on overall network

performance by using a cycle-accurate network simulator to
measure the average packet latency as a function of the flit
injection rate. Network links have a latency of one cycle for
the mesh, and one to three cycles for the flattened butterfly.
We assume credit-based flow control and model an input-
queued VC router design with a simple two-stage pipeline:
VC and switch allocation take place in the first pipeline
stage, and switch traversal occurs in the second stage. In-
put buffers are statically partitioned, with eight entries as-
signed to each VC. In order to reduce zero-load latency, we
employ speculative switch allocation as introduced in [17].
Furthermore, lookahead routing [7] is used to pre-compute
the routing decision for the next downstream router in paral-
lel with the current router’s VC allocation stage, effectively
removing the routing logic from the critical path. While
this approach reduces the depth of the router’s pipeline and
thus its zero-load latency, it does not favor the use of so-
phisticated adaptive routing algorithms, as any information
required to make routing decisions must be available at the
upstream router. Consequently, we implement dimension-
order routing on the mesh network and the UGAL routing
algorithm from [18] on the flattened butterfly.

We present simulation results for uniform random traffic;
additional simulation runs with other synthetic traffic pat-
terns suggest that our conclusions are largely invariant to
traffic pattern selection. Traffic comprises request and reply
packets for read and write transactions. Read requests and
write replies consist of a single flit, while read replies and
write requests comprise a head flit and four flits containing
payload data. Network terminals inject request packets into
the network according to a geometric random process with
configurable arrival rate. When such requests reach their
destination terminal, a corresponding reply packet is gener-
ated in the next cycle and sent back to the source terminal;
this takes priority over the injection of new request packets.



input VC #1 at input port #1

OR
ro

ut
in

g 
in

fo

in
pu

t V
C 

gr
an

tP

V
V:1

arbiter
V

DE
M

UX

PxV:1
arbiter

(1)

PxV:1
arbiter
(PxV)fro

m
 o

th
er

 
in

pu
t V

Cs

PxV

to
 o

th
er

 
in

pu
t V

Cs…

……

PxV
/

PxV
/

PxV
/

PxV
/

/

……
…

…

…
…… …

PxV/

/

/
/

V
/

(a) Separable input-first allocator (sep if).

input VC #1 at input port #1

OR

ro
ut

in
g 

in
fo

in
pu

t V
C 

gr
an

tP

V
V V:1

arbiter
V

DE
M

UX

PxV:1
arbiter

(1)

PxV:1
arbiter
(PxV)fro

m
 o

th
er

 
in

pu
t V

Cs

PxV

to
 o

th
er

 
in

pu
t V

Cs…

……

PxV
/

PxV
/

PxV
/

PxV
/

/

……
…

…

…
…… …

PxV/

/

/

/ /

(b) Separable output-first allocator (sep of).

input VC #1 at input port #1

OR

ro
ut

in
g 

in
fo

in
pu

t V
C 

gr
an

tP

V
V

DE
M

UX

fro
m

 o
th

er
 

in
pu

t V
Cs

to
 o

th
er

 
in

pu
t V

Cs

…

PxV
/

PxV
/

PxV
/

PxV
/

…

PxV /

/

/

/

(PxV)x(PxV)
wavefront
allocator

PxV/

…
…

(c) Wavefront allocator (wf).

Figure 3: VC allocator block diagrams.

4. VC ALLOCATORS
In the following section, we evaluate three representative

VC allocator implementations based on the architectures
discussed in Section 2 and introduce a sparse VC alloca-
tion scheme that can significantly reduce logic complexity
for common allocator configurations.

4.1 Implementation Details
Head flits buffered at any of the router’s input VCs must

be assigned a suitable output VC at the output port selected
by the routing function before they can proceed through the
router pipeline. Thus, the VC allocator performs a matching
between P×V requesters and P×V resources, subject to the
constraint that any output VCs requested by a given input
VC at any given time share the same output port.

In the separable input-first implementation, shown in Fig-
ure 3(a), each input VC first determines which output VC
at the destination output port to bid on. Requests are for-
warded to a stage of P×V -input arbiters at the output VCs
as in the canonical implementation; these large P×V -input
arbiters can be implemented as tree arbiters—i.e., a stage of
P V -input arbiters in parallel with a single P -input arbiter
that selects among them—to reduce delay. Finally, grants
for each input VC are grouped and reduced to a V -wide

vector that indicates the granted output VC.
The separable output-first implementation is depicted in

Figure 3(b). Here, each input VC forwards requests to all
candidate output VCs at the destination port, where arbi-
tration is again performed between all incoming requests. As
a given input VC’s requests may win arbitration at multiple
output VCs, an additional stage of arbitration is needed af-
ter grouping and reducing grants to select a single winning
VC.

Finally, the wavefront-based implementation, shown in
Figure 3(c), consists of a canonical P×V -input wavefront al-
locator, with additional logic for generating the P×V -wide
request vector for each input VC as in the separable output-
first case, and reducing the P×V -wide grant vectors to a
V -wide vector as in the input-first case.

4.2 Sparse VC Allocation
VCs can serve a number of orthogonal purposes: Different

types of packets, e.g. requests and replies, can be assigned to
disjoint sets of VCs to prevent protocol-level deadlock at the
network boundary; this partitions the total set of VCs into
subsets corresponding to different message classes. In order
to prevent deadlock scenarios caused by cyclic resource de-
pendencies within the network, these subsets can be further
partitioned into different resource classes, with transitions
between the latter being restricted such as to enforce a par-
tial order of resource acquisition. Examples of this approach
include dateline routing in torus networks and two-phase
routing as implemented in Valiant’s algorithm [20] or the
UGAL algorithm introduced in [18]. Finally, multiple VCs
can be assigned to each subset; this improves network per-
formance under load by eliminating head-of-line blocking,
and allows for better channel utilization by sharing a phys-
ical link among multiple logical connections. Thus, we can
express the total number of VCs as

V = M ×R× C,

where M is the number of message classes, R is the number
of resource classes, and C is the number of VCs assigned to
each class.

In previous work, allocators have usually treated VCs in
a largely uniform manner: The allocator logic is designed
such that it can handle requests from any given input VC
to the whole range of output VCs, and a bit vector sup-
plied by the routing logic is used to constrain that range to
a subset of allowable VCs at runtime. However, based on
the following observations, we can exploit the assignment of
VCs to different message and resource classes to statically
constrain the set of candidate output VCs that a given input
VC can generate requests for, and thus greatly reduce the
VC allocator’s logic complexity.

As packets are assigned to message classes according to
the type of the packet itself, a packet’s message class remains
unchanged throughout its lifetime in the network. Thus, as
packets never transition from one message class to another,
we can partition the VC allocator into a set of smaller, com-
pletely separate VC allocators, each of which only needs to
handle VCs corresponding to a single message class. For
the separable allocator implementations, this enables us to
reduce the number of ports for the input- and output-stage
arbiters, as well as the number of output-side arbiters that
each individual input VC connects to, by a factor of M . For
the wavefront-based implementation, on the other hand, the



m
in

im
al

no
n-

m
in

im
al

m
in

im
al

no
n-

m
in

im
al

request reply

minimal

non-
minimal

minimal

non-
minimal

request

reply

resource
class

message
class

0 15output VCs

in
pu

t V
Cs

0
15

Figure 4: VC transition matrix (fbfly, 2×2×4 VCs).

large wavefront block with P×V inputs can be replaced by
M smaller wavefront blocks with P×V×C inputs each.

Likewise, while a packet’s resource class can change on its
way through the network, it can by design only do so in a
well-defined order. This allows us to further restrict the set
of output VCs a given input VC can request; for example,
for dateline routing, once a packet has crossed the dateline,
it is no longer allowed to use the pre-dateline VCs. As a
result, we can reduce the number of ports on the input-
and output-side arbiters in the separable implementations
down to the number of possible successor/predecessor re-
source classes times the number of VCs in each class. How-
ever, except for the special case where each resource class
has at most one successor and one predecessor class (pos-
sibly including itself), this particular optimization does not
apply to the wavefront-based implementation.

Finally, all VCs belonging to the same class are equiva-
lent from a functional point of view. As a result, a given
input VC can either use all of the output VCs in a given
class or none of them, and thus VC allocator requests need
not specify individual candidate VCs within the class, but
instead can select the class as a whole. This allows for ad-
ditional logic optimizations.

To demonstrate the sparseness of VC-to-VC transitions
for a concrete example, Figure 4 shows all possible transi-
tions for the case of the flattened butterfly topology with two
message classes, two resource classes and four VCs assigned
to each class. As indicated by the black circles, only 96 of the
256 total possible VC-to-VC transitions are actually legal—
and thus need to be supported by the VC allocator—in this
configuration; in particular, any given VC is restricted to
at most eight possible successor and predecessor VCs, all of
which are confined to the same matrix quadrant.

4.3 Results

4.3.1 Implementation Cost
Figure 5 shows the delay and area associated with each VC

allocator implementation, while Figure 6 plots delay against
power. For separable allocators, we consider both imple-
mentations built from matrix arbiters (m) and those using
round-robin arbiters (rr); since the pre-selection of a win-
ning VC for each potentially granted output port is not on
the wavefront allocator’s critical path, we use the simpler
round-robin arbiters for that case.

Connected data points in each of the subfigures repre-
sent designs before and after applying the optimizations de-

scribed in Section 4.2; in cases where only a single data
point is present, Design Compiler consistently ran out of
memory while synthesizing the un-optimized version, and
consequently only the optimized results are shown.

Overall, sparse VC allocation yields significant improve-
ments across the board, reducing delay, area and power by
up to 41%, 90% and 83%, respectively.

For the design points with a single VC assigned to each
packet class, the sparse version of the wavefront allocator
is both the fastest implementation and represents the best
tradeoff between area and delay. However, as a result of
its scaling properties, the wavefront allocator’s delay quickly
surpasses that of the separable implementations as the num-
ber of VCs increases; because synthesis tries to compensate
for this effect by using faster—and therefore, larger—gates,
the same applies for area and power.

The difference in delay between separable implementa-
tions using matrix arbiters on the one hand and round-robin
arbiters on the other hand is relatively small when sparse VC
allocation is used; in most cases, the delay improvement is
unlikely to justify the higher cost of using matrix arbiters.

Despite the optimizations proposed in Section 4.2, Design
Compiler failed at synthesizing the wavefront-based alloca-
tor implementations for the two larger flattened butterfly
configurations; however, extrapolating from the results for
the comparatively simpler mesh configurations, their area,
power and delay would significantly exceed those of the sepa-
rable implementations at these design points. For the largest
configuration of the flattened butterfly, synthesis could only
be successfully completed for the two round-robin-based sep-
arable allocator variants.

4.3.2 Matching Quality
Figure 7 shows the quality of matchings generated by each

allocator. For cases where a single VC is assigned to each
packet class, as shown in Figure 7(a) and 7(d), all three al-
locator implementations generate maximum matchings for
every valid requests matrix, and thus have a constant match-
ing quality—as defined in Section 3.1—of 1. In such cases,
each input VC can use only one specific output VC; thus, if
that VC is unavailable, there are no further candidate VCs it
could use instead, and the request cannot be satisfied. Both
the separable and the wavefront-based implementations will
grant all non-conflicting requests and a single one among
each group of conflicting requests, yielding the best possible
matching under the given constraint.

The situation is somewhat different in networks with mul-
tiple VCs assigned to each packet class. As before, all three
allocator types are guaranteed to grant non-conflicting re-
quests. However, in the presence of conflicts—i.e., multiple
input VCs requesting access to the same packet class—the
wavefront allocator will grant as many of the requests as VCs
are available in that class, again yielding a maximum match-
ing. For the separable allocators, on the other hand, situa-
tions can arise where some of the VCs within a given class
are left unassigned even in the presence of further requests;
e.g., for a separable input-first implementation, multiple in-
put VCs destined for the same packet class might select the
same output VC during input-side arbitration, leaving other
VCs available in that class unused. Consequently, match-
ing quality for the separable implementations decreases for
both higher injection rates and larger numbers of VCs per
class, as both increase the probability that such lockouts will



0 0.5 1 1.5 2
0

5000

10000

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(a) mesh, 2×1×1 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

x 10
4

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(b) mesh, 2×1×2 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

x 10
5

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(c) mesh, 2×1×4 VCs.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

x 10
4

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(d) fbfly, 2×2×1 VCs.

0 1 2 3 4
0

1

2

3

4

5

6

x 10
5

delay (ns)
ar

ea
 (

sq
 u

m
)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr

(e) fbfly, 2×2×2 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

x 10
5

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/rr
sep_of/rr

(f) fbfly, 2×2×4 VCs.

Figure 5: VC allocator area vs. delay.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(a) mesh, 2×1×1 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(b) mesh, 2×1×2 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(c) mesh, 2×1×4 VCs.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(d) fbfly, 2×2×1 VCs.

0 1 2 3 4
0

10

20

30

40

50

60

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr

(e) fbfly, 2×2×2 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/rr
sep_of/rr

(f) fbfly, 2×2×4 VCs.

Figure 6: VC allocator power vs. delay.

occur. Input-first allocation provides slightly better match-
ing here, as the narrower V -input arbitration is performed
before the wider P×V -input arbitration, resulting in more
requests being propagated from the first stage of arbitration
to the second one than in the output-first case.

Overall, we find that a wavefront-based VC allocator yields
a matching quality of 1 for all configurations, and outper-
forms separable input- and output-first implementations by
up to 20% and 25%, respectively, under high load.

4.3.3 Network-Level Performance
Due to the fact that VC allocation only needs to be per-

formed once per packet, the impact on overall network per-
formance is less pronounced than the differences in matching
quality would imply: As outlined in Section 3, a request-
reply packet pair in our traffic model always comprises a
total of six flits; consequently, on average only one in three

flits requires VC allocation, making it unlikely for multiple
conflicting VC requests to be issued in the same cycle at any
given router. As non-conflicting requests are guaranteed to
be granted by all three allocator implementations consid-
ered, we expect VC allocation quality to have little overall
impact on network performance. Indeed, network-level sim-
ulation results—not presented in more detail due to space
constraints—confirm that the choice of VC allocator does
not significantly affect the latency-throughput characteris-
tics for otherwise identical router configurations; in particu-
lar, both zero-load latency and saturation bandwidth remain
virtually unchanged.

4.4 Discussion
Overall, the VC allocator’s limited impact on network-

level performance suggests that architects can essentially
ignore matching quality when selecting a particular imple-



0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(a) mesh, 2×1×1 VCs.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(b) mesh, 2×1×2 VCs.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(c) mesh, 2×1×4 VCs.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(d) fbfly, 2×2×1 VCs.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(e) fbfly, 2×2×2 VCs.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(f) fbfly, 2×2×4 VCs.

Figure 7: VC allocator matching quality.

mentation, and choose the allocator architecture that best
matches given delay, area and power constraints.

While previous work in the NoC domain has largely em-
ployed separable allocator implementations throughout, our
results indicate that, after applying the optimizations intro-
duced in Section 4.2, wavefront-based VC allocator imple-
mentations represent a reasonable design choice for networks
with few VCs assigned to each message class. As the num-
ber of VCs increases, though, the wavefront allocator’s delay
and cost grow rapidly, particularly for the flattened butterfly
configurations; in this case, the separable input-first alloca-
tor provides low delay, as well as reasonable matching qual-
ity and cost, and consequently represents a more suitable
choice.

5. SWITCH ALLOCATORS
In this section, we apply the evaluation methodology used

in the previous section to three representative switch alloca-
tor implementations and propose an improved speculation
mechanism that reduces critical path delay without incur-
ring an increase in zero-load latency.

5.1 Implementation Details
Switch allocation performs a matching between requests

from the V input VCs at each of the router’s P input ports
on the one hand and available crossbar slots on the other
hand, subject to the constraint that at most one VC per
input port can receive a grant. As a result of this additional

input port #1

V:1
arbiter

OR
(1)

OR
(V)

O
R

fro
m

 o
th

er
 

in
pu

t p
or

ts

to
 c

ro
ss

ba
r

in
pu

t V
Cs

' p
or

t r
eq

ue
st

s

in
pu

t V
C 

gr
an

t

…

…

……

…

P
/

P
/

GATE
AND

V
/

V
/

P/
P/

P:1
arbiter

(1)

P:1
arbiter

(P)

…

……

P
/

P
/

P
/

P
/ ……

…
…

…
…

… …

P
/

P/ / P

/ V

M
UX

(a) Separable input-first allocator (sep if).

input port #1

V:1
arbiter

OR
(1)

OR
(V)

P:1
arbiter

(1)

P:1
arbiter

(P)fro
m

 o
th

er
 

in
pu

t p
or

ts

to
cr

os
sb

arin
pu

t V
Cs

' p
or

t r
eq

ue
st

s P

P
V

P

…

…

…

O
R

AND
(1)

AND
(V)

… …

in
pu

t V
C

gr
an

t

to
 o

th
er

 
in

pu
t p

or
ts

P

P
P

P

P

……

P

…

……

…

/

/

/
/

/

/

/

/

P
/

P
/

P
/

P
/

/ /

P/

……
…

…

…
…

… …

M
UX

(b) Separable output-first allocator (sep of).

input port #1
OR
(1)

OR
(V)

fro
m

 o
th

er
 

in
pu

t p
or

ts

in
pu

t V
Cs

' p
or

t r
eq

ue
st

s P

P

V

…

……

OR

AND
(1)

AND
(V)

…

in
pu

t V
C

gr
an

t

PxP
wavefront
allocator

to
 c

ro
ss

ba
r

…
…

…
…

V:1
arbiter

(1)

V:1
arbiter

(P)

…
… …

…

P

P
…

P
P

P

P

/

/

/
/

/

/

/
/

P

P

/

/

/

P
/
P
/
P
/

P
/

P
/

P
/

(c) Wavefront allocator (wf).

Figure 8: Switch allocator block diagrams.

constraint, switch allocators differ slightly from canonical
P×V -input allocators; block diagrams for the switch alloca-
tor implementations considered in this paper are shown in
Figure 8.

In the separable input-first implementation, shown in Fig-
ure 8(a), a V -input arbiter first determines a winner among
all active VCs at each input port. The winning VCs’ requests
are then forwarded to the appropriate output ports, where
a second round of P -input arbitration takes place among re-
quests from different inputs. Grants are generated for those
VCs whose requests are successful in both arbitration stages.
Furthermore, the output arbiters directly drive the control
signals to the crossbar.

In the output-first implementation, shown in Figure 8(b),
requests from all input VCs are combined and forwarded to
the appropriate output ports, where P -input arbitration is



rows

cols

PxP
allocator
(spec)

OR
(1)

re
q_

no
ns

pe
c

PxP
allocator

(nonspec)

PxP PxP

P

PxP

PxP

PxP

re
q_

sp
ec

gn
t_

no
ns

pe
c

gn
t_

sp
ec

OR
(P)

OR
(1)

OR
(P)

P

P

P

AND

NO
R

(1)NO
R

(PxP)

PxP

… …

…

…

…

…

…

col sums

row sums

PxP

///

/ /
/

/

/

/

/

/

(a) Conventional scheme.

col sums

row sums

cols

rows

PxP
allocator
(spec)

OR
(1)

re
q_

no
ns

pe
c

PxP
allocator

(nonspec)

PxP

P

PxP

PxP

PxP

re
q_

sp
ec

gn
t_

no
ns

pe
c

gn
t_

sp
ec

OR
(P)

OR
(1)

OR
(P)

P

P

P

ANDPxP

NO
R

(1)NO
R

(PxP)

PxP

… …

…

…

…

…

…

//

/

/

/

/

/ /
/

/

(b) Pessimistic scheme.

Figure 9: Speculative switch allocation.

performed between all requesting input ports. Once one or
more output ports are granted to a given input port, we
check which of its input VCs can use the granted ports,
and perform V -input arbitration among all candidates to
determine a winning VC. Because multiple outputs might
be granted to a given input in the first stage, the crossbar
control signals in this case cannot be driven directly by the
output-stage arbiters; instead, they are generated from the
winning VC’s port select signal after allocation is complete.

Finally, for the wavefront allocator, shown in Figure 8(c),
different input VCs’ requests are combined as in the output-
first case; however, the wavefront block guarantees that at
most one output port is granted to any given input port. As
a result, the wavefront block’s outputs can directly drive the
crossbar control signals, and overall delay can be reduced by
pre-determining for each input port which of its VCs will be
selected if a grant for a given output port is received; the
pre-selection can be performed in parallel with the wavefront
allocation by a stage of V -input arbiters.

5.2 Speculative Switch Allocation
Speculative switch allocation as a means of reducing a

router’s zero-load latency was originally proposed by Peh
and Dally [17]. It enables head flits to effectively bypass the
VC allocation stage in the router pipeline by allowing them
to bid for crossbar access at the same time they request an
output VC.

The implementation described in their original paper uses
separate switch allocators for handling non-speculative and
speculative requests. In order to avoid performance degrada-
tion due to misspeculation, non-speculative grants are pri-
oritized over speculative ones; i.e., speculative grants are
discarded if any non-speculative grant that uses the same
input or output port is generated. A block diagram of a
possible implementation is shown in Figure 9(a). The checks
for input and output conflicts require a set of 2×P P -input
reduction ORs to generate row- and column-wise summary
bits indicating the presence of a non-speculative grant, fol-
lowed by a two-input NOR stage and a two-input AND stage
to perform the actual masking. Assuming the same basic
allocator implementation is used for speculative and non-
speculative requests, the allocator’s overall critical path is
thus extended by the sum of the delays corresponding to
the reduction trees and the masking logic when compared
to a non-speculative implementation.

However, we can reduce this additional delay without sig-
nificantly impacting speculation efficiency by observing that
speculation has the most noticeable effect at low to medium
network load, where the expected number of requests pend-
ing at each router’s inputs—and thus the probability of
multiple requests being in conflict—is low. Consequently,
it is likely that the majority of requests will be granted,
and we can pessimistically mask speculative grants based
on conflicting non-speculative requests—rather than non-
speculative grants—without sacrificing a significant fraction
of the available speculation opportunities. As shown in Fig-
ure 9(b), this removes both the large reduction ORs and the
NOR gates from the overall critical path, reducing the delay
overhead over a non-speculative implementation to the final
stage of 2-input AND gates.

5.3 Results

5.3.1 Implementation Cost
Figures 10 and 11 show the delay-area and delay-power

tradeoffs for the three switch allocator implementations de-
scribed in Section 5.1. The three data points on each curve
correspond to a non-speculative implementation, a pessimistic
speculative implementation and a conventional speculative
implementation, respectively.

Overall, the separable input-first allocator consistently of-
fers the lowest delay and in most cases pareto-dominates
both the corresponding output-first and wavefront config-
urations. The wavefront-based implementations approach
the delay of the input-first ones for a number of mesh de-
sign points, but more generally fall between the latter and
the output-first configurations, while being more expensive
than either in terms of area and power. As in the case of
the VC allocators, the delay reduction achieved by using
matrix arbiters rather than simpler round-robin arbiters for
the separable implementations usually does not outweigh the
associated area and power penalty.

As expected, the pessimistic speculation mechanism yields
lower delay than the conventional one virtually across the
board, in many cases approaching that of a non-speculative
implementation. The delay reduction is most pronounced
for the wavefront allocator, where savings of up to 23% can
be achieved, but is usually accompanied by increases in area
and power in this context. For some of the separable con-
figurations, on the other hand, area and power are reduced



0 0.5 1 1.5 2
0

2000

4000

6000

8000

10000

12000

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(a) mesh, 2×1×1 VCs.

0 0.5 1 1.5 2 2.5
0

5000

10000

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(b) mesh, 2×1×2 VCs.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

x 10
4

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(c) mesh, 2×1×4 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10
x 10

4

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(d) fbfly, 2×2×1 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12
x 10

4

delay (ns)
ar

ea
 (

sq
 u

m
)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(e) fbfly, 2×2×2 VCs.

0 1 2 3 4
0

0.5

1

1.5

2
x 10

5

delay (ns)

ar
ea

 (
sq

 u
m

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(f) fbfly, 2×2×4 VCs.

Figure 10: Switch allocator area.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(a) mesh, 2×1×1 VCs.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(b) mesh, 2×1×2 VCs.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(c) mesh, 2×1×4 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(d) fbfly, 2×2×1 VCs.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(e) fbfly, 2×2×2 VCs.

0 1 2 3 4
0

5

10

15

delay (ns)

po
w

er
 (

m
W

)

 

 
sep_if/m
sep_if/rr
sep_of/m
sep_of/rr
wf/rr

(f) fbfly, 2×2×4 VCs.

Figure 11: Switch allocator power.

along with delay.

5.3.2 Matching Quality
Figure 12 compares the individual switch allocators’ match-

ing quality. At low network loads, all three allocators gen-
erate near-maximum matchings; as in the case of the VC
allocator, this is because conflicting requests are less likely
to occur at low injection rates.

As the injection rate is increased, the number of matchings
generated by the wavefront-based allocator initially ramps
up more slowly than the one generated by a maximum-size
allocator, and its matching quality thus starts to decrease.
However, for network configurations with larger numbers
of VCs and at high injection rates, the probability that
at least one VC at each input port has a flit available for
each output port in any given cycle eventually becomes high.
This presents a natural limit to the number of matchings a

maximum-size allocator—and, by extension, any allocator—
can generate. As the wavefront allocator is still progressing
towards this limit even once the maximum-size allocator has
reached it, its matching quality starts to increase again.

The separable output-first allocator, on the other hand, is
not guaranteed to find maximal matchings. While its match-
ing quality is therefore inferior to that of the wavefront-based
implementation, its general behavior is otherwise similar.

In contrast, the separable input-first switch allocator even-
tually becomes limited by the fact that it can only propa-
gate a single request per input port to its second arbitration
stage; consequently, it’s matching quality starts to flatten
out once the probability of at least one VC at a given input
port having a flit available in any given cycle becomes high,
and is generally lower than the one offered by the other two
allocator implementations.



0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(a) mesh, 2×1×1 VCs

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(b) mesh, 2×1×2 VCs

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(c) mesh, 2×1×4 VCs

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(d) fbfly, 2×2×1 VCs

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(e) fbfly, 2×2×2 VCs

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

requests per VC per cycle

m
at

ch
in

g 
qu

al
ity

 

 

sep_if
sep_of
wf

(f) fbfly, 2×2×4 VCs

Figure 12: Switch allocator matching quality.

5.3.3 Network-Level Performance
The average network-level packet latency as a function of

the flit injection rate is depicted in Figure 13. Based on our
conclusions from Section 4, simulations assume a separable
input-first VC allocator; furthermore, we use the improved
speculative switch allocation mechanism as described in Sec-
tion 5.1.

Despite the differences in matching quality, we find that
input- and output-first separable switch allocators yield vir-
tually identical average packet latencies across the entire
range of injection rates and network configurations. This
discrepancy results from the fact that the isolated simula-
tions conducted for measuring matching quality generate re-
quests for each input VC independently, which can lead to
much higher request rates than could be sustained in steady
state in an actual network.

Comparing the wavefront allocator and the separable al-
locators, the difference in saturation rate is negligible for the
mesh topology with 2×1×1 VCs and remains below 4% for
2×1×4 VCs. For the flattened butterfly, on the other hand,
the performance advantage is more significant, particularly
as the number of VCs is increased: For 2×2×1 VCs, the
wavefront allocator improves the saturation rate by 4% com-
pared to the separable input-first allocator; for 2×2×4 VCs,
the difference exceeds 20%. The wavefront allocator benefits
both from larger (i.e., higher radix) and from more densely
populated (i.e., more VCs) request matrices, as these pro-
vide more candidate assignments for finding a good maximal

matching. For separable allocators, on the other hand, such
request matrices actually increase the likelihood of multi-
ple output ports being assigned to the same input or vice
versa, due to the fact that input and output arbitration are
performed separately.

Figure 14 compares the average packet latency achieved by
the two speculative switch allocation mechanisms described
in Section 5.2, as well as by a non-speculative switch allo-
cator. Simulations were performed using a separable input-
first switch allocator; additional simulations using separable
output-first and wavefront allocators yielded similar results;
for the wavefront allocator, the differences in saturation rate
were slightly less apparent.

The impact of speculation on the network’s zero-load la-
tency is more pronounced for the mesh network, where router
pipeline delay represents a larger fraction of overall packet
latency and we measure improvements of up to 23%. Due
to the flattened butterfly’s much smaller network diameter,
zero-load latency for this topology is dominated by channel
and serialization latency and as a result is only improved by
14%.

Speculative switch allocation can also help increase the
network’s saturation rate, as it avoids stall cycles caused by
flits waiting for VC allocation and as a result allows more
flits to traverse the router per unit time. However, in net-
works with sufficiently many VCs, there is a high proba-
bility that a stall cycle can be avoided by just issuing a
flit from another VC instead. Consequently, the saturation
rate improvement due to speculation is larger in networks
with fewer VCs. We measure improvements of 14% for the
mesh network with 2×1×1 VCs, 6% for the flattened but-
terfly with 2×2×1 VCs, and less than 5% for the remaining
configurations of either topology.

As expected, both speculative implementation variants
yield virtually identical performance for low to medium in-
jection rates where the majority of requests are granted. As
the injection rate approaches saturation and the probabil-
ity of conflicts increases, the pessimistic variant discards a
larger fraction of speculation opportunities, and as a result,
its latency approaches that of the non-speculative implemen-
tation. This effect is slightly more pronounced for networks
with larger numbers of VCs, where statistically more re-
quests are available at each input port, and thus conflicts
are more likely to occur.

Overall, our results indicate that the pessimistic approach
of suppressing speculative grants by checking for conflict-
ing non-speculative requests can reduce delay compared to
the conventional approach without compromising zero-load
latency. While it becomes less effective once the network
starts to approach saturation, the maximum throughput is
only reduced by less than 4% compared to the conventional
speculation mechanism.

5.4 Discussion
From an architect’s point of view, switch allocators that

provide higher matching quality at the cost of increased de-
lay are particularly suitable for improving performance in
primarily throughput-oriented networks, where large quan-
tities of data are transferred concurrently using DMA-like
semantics. Examples of such networks include I/O interfaces
connecting different functional blocks on a SoC, or the data
supply networks for highly parallel graphics accelerators and
stream computing engines. For primarily latency-sensitive



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(a) mesh, 2×1×1 VCs

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(b) mesh, 2×1×2 VCs

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(c) mesh, 2×1×4 VCs

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(d) fbfly, 2×2×1 VCs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(e) fbfly, 2×2×2 VCs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
sep_if
sep_of
wf

(f) fbfly, 2×2×4 VCs

Figure 13: Performance of different switch allocator implementations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(a) mesh, 2×1×1 VCs

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(b) mesh, 2×1×2 VCs

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(c) mesh, 2×1×4 VCs

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(d) fbfly, 2×2×1 VCs

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(e) fbfly, 2×2×2 VCs

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

injection rate (flits/cycle)

la
te

nc
y 

(c
yc

le
s)

 

 
nonspec
spec_gnt
spec_req

(f) fbfly, 2×2×4 VCs

Figure 14: Performance of speculative switch allocation schemes.

applications like cache coherence traffic, on the other hand,
network load is expected to be relatively low during normal
operation; such applications favor separable allocators due
to their comparatively smaller delay and cost.

Speculation, on the other hand, is most useful in latency-
sensitive applications that directly benefit from the resulting
decrease in zero-load latency. For throughput-oriented net-
works, the slight increase in saturation rate afforded by spec-
ulation is unlikely to justify the associated increases in delay
and complexity. Furthermore, speculation is less attractive
for topologies with low network diameter, where pipeline de-
lay accounts for only a small fraction of the overall packet
latency.

6. CONCLUSIONS
In this paper, we have explored the design space for VC

and switch allocators in the context of NoC routers. In par-
ticular, we have evaluated input- and output-first variants
of separable allocators as well as wavefront allocators, and
characterized them in terms of matching quality, delay, area
and power.

Simulation results for two representative 64-node NoC
topologies indicate that despite measurable differences in
matching quality, network-level performance is largely in-
sensitive to the choice of VC allocator. As such, a particular
implementation can be selected primarily on the basis of de-
lay and cost considerations without sacrificing performance.
While the wavefront allocator represents a reasonable choice
for smaller networks, separable variants offer lower delay and
cost for networks with higher radix and more VCs.

In contrast, the choice of switch allocator directly affects
the achievable saturation rate, particularly for larger net-
works. While the difference compared to separable alloca-



tors is small for mesh networks with few VCs, the wavefront
allocator achieves 15% and 21% more throughput for a flat-
tened butterfly network with 8 and 16 VCs, respectively. On
the other hand, separable input-first allocators tend to offer
lower delay, area and power.

We have also introduced a sparse VC allocation scheme,
which can reduce the VC allocator’s delay, area and power
by up to 41%, 90% and 83%, respectively. Finally, we have
shown that by using a slightly pessimistic approach to specu-
lative switch allocation, the delay of the switch allocator can
be reduced by up to 23% without compromising zero-load
latency.

Overall, our results indicate that choosing the optimal al-
locator implementation depends on the expected network
and application characteristics and constraints; in particu-
lar, different tradeoff points are favored by latency-sensitive
and throughput-oriented applications, respectively.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Se-

curity Agency under Contract H98230-08-C-0272-P-3 and
the National Science Foundation under Grant CCF-0702341.
Daniel U. Becker is supported by a Prof. Michael J. Flynn
Stanford Graduate Fellowship.

8. REFERENCES
[1] L. Benini and G. de Micheli. Networks on Chip: A

New Paradigm for Systems on Chip Design. In
Proceedings of the 2002 Design, Automation and Test
in Europe Conference and Exhibition (DATE’02),
2002.

[2] W. J. Dally. Virtual-Channel Flow Control. IEEE
Transactions on Parallel and Distributed Systems,
3(2), 1992.

[3] W. J. Dally and B. Towles. Route Packets, Not Wires:
On-Chip Inteconnection Networks. In Proceedings of
the 38th Conference on Design Automation (DAC-38),
2001.

[4] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann
Publishers, San Francisco, CA, 2004.

[5] J. G. Delgado-Frias and G. B. Ratanpal. A VLSI
Wrapped Wave Front Arbiter for Crossbar Switches.
In Proceedings of the 11th Great Lakes Symposium on
VLSI, 2001.

[6] L. R. Ford and D. R. Fulkerson. Maximal Flow
through a Network. Canadian Journal of
Mathematics, 8(3), 1956.

[7] M. Galles. Spider: A High-Speed Network
Interconnect. IEEE Micro, 17(1), 1997.

[8] R. R. Hoare, Z. Ding, and A. K. Jones. A
Near-optimal Real-time Hardware Scheduler for Large
Cardinality Crossbar Switches. In Proceedings of the

2006 ACM/IEEE Conference on Supercomputing
(SC’06), 2006.

[9] J. Hurt, A. May, X. Zhu, and B. Lin. Design and
Implementation of High-Speed Symmetric Crossbar
Schedulers. In Proceedings of the 1999 IEEE
Conference on Communications (ICC’99), volume 3,
1999.

[10] J. Kim, J. Balfour, and W. J. Dally. Flattened
Butterfly Topology for On-Chip Networks. In
Proceedings of the 40th IEEE/ACM International
Symposium on Microarchitecture (ISCA-40), 2007.

[11] J. Kim, C. Nicopoulos, D. Park, N. Vijaykrishnan,
Y. S. Mazin, and C. R. Das. A Gracefully Degrading
and Energy-Efficient Modular Router Architecture for
On-Chip Networks. SIGARCH Computer Architecture
News, 34(2), 2006.

[12] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. K.
Jha. A 4.6Tbits/s 3.6GHz Single-cycle NoC Router
with a Novel Switch Allocator in 65nm CMOS. In
Proceedings of the 2007 IEEE International
Conference on Computer Design (ICCD’07), 2007.

[13] N. McKeown. The iSLIP Scheduling Algorithm for
Input-Queued Switches. IEEE/ACM Transactions on
Networking, 7(2), 1999.

[14] S. S. Mukherjee, F. Silla, P. Bannon, J. S. Emer,
S. Lang, and D. Webb. A Comparative Study of
Arbitration Algorithms for the Alpha 21364 Pipelined
Router. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), 2002.

[15] R. Mullins, A. West, and S. Moore. Low-Latency
Virtual-Channel Routers for On-Chip Networks. In
Proceedings of the 31st International Symposium on
Computer Architecture (ISCA-31), 2004.

[16] D. Park, R. Das, C. Nicopoulos, J. Kim,
N. Vijaykrishnan, R. K. Iyer, and C. R. Das. Design of
a Dynamic Priority-Based Fast Path Architecture for
On-Chip Interconnects. In Proceedings of the 15th
Symposium on High Performance Interconnects
(HOTI-15), 2007.

[17] L.-S. Peh and W. J. Dally. A Delay Model and
Speculative Architecture for Pipelined Routers. In
Proceedings of the 7th International Symposium on
High-Performance Computer Architecture (HPCA-7),
Apr 2001.

[18] A. Singh. Load-Balanced Routing in Interconnection
Networks. PhD thesis, Stanford University, 2005.

[19] Y. Tamir and H.-C. Chi. Symmetric Crossbar Arbiters
for VLSI Communication Switches. IEEE Transactions
on Parallel and Distributed Systems, 4(1), 1993.

[20] L. G. Valiant and G. J. Brebner. Universal Schemes
for Parallel Communication. In Proceedings of the 13th
ACM Symposium on Theory of Computing, 1981.


	1 Introduction
	2 Background
	2.1 Separable Allocation
	2.2 Wavefront Allocation
	2.3 Maximum-Size Allocation

	3 Methodology
	3.1 RTL-Based Evaluation
	3.2 Network-Level Performance

	4 VC Allocators
	4.1 Implementation Details
	4.2 Sparse VC Allocation
	4.3 Results
	4.3.1 Implementation Cost
	4.3.2 Matching Quality
	4.3.3 Network-Level Performance

	4.4 Discussion

	5 Switch Allocators
	5.1 Implementation Details
	5.2 Speculative Switch Allocation
	5.3 Results
	5.3.1 Implementation Cost
	5.3.2 Matching Quality
	5.3.3 Network-Level Performance

	5.4 Discussion

	6 Conclusions
	7 Acknowledgments
	8 References

